Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1490524.v1

ABSTRACT

Mass surveillance testing can help control outbreaks of infectious diseases such as COVID-19. However, diagnostic test shortages are prevalent globally and continue to occur in the US with the onset of new COVID-19 variants, demonstrating an unprecedented need for improving our current methods for mass surveillance testing. By targeting surveillance testing towards individuals who are most likely to be infected and, thus, increasing testing positivity rate (i.e., percent positive in the surveillance group), fewer tests are needed to capture the same number of positive cases. Here, we developed an Intelligent Testing Allocation (ITA) method by leveraging data from the CovIdentify study (6,765 participants) and the MyPHD study (8,580 participants), including smartwatch data from 1,265 individuals of whom 126 tested positive for COVID-19. Our rigorous model and parameter search uncovered the optimal time periods and aggregate metrics for monitoring continuous digital biomarkers to increase the positivity rate of COVID-19 diagnostic testing. We found that resting heart rate features distinguished between COVID-19 positive and negative cases earlier in the course of the infection than steps features, as early as ten and five days prior to the diagnostic test, respectively. We also found that including steps features increased the area under the receiver operating characteristic curve (AUC-ROC) by 7–11% when compared with RHR features alone, while including RHR features improved the AUC of the ITA model’s precision-recall curve (AUC-PR) by 38–50% when compared with steps features alone. The best AUC-ROC (0.73 ± 0.14 and 0.77 on the cross-validated training set and independent test set, respectively) and AUC-PR (0.55 ± 0.21 and 0.24) were achieved by using data from a single device type (Fitbit) with high-resolution (minute-level) data. Finally, we show that ITA generates up to a 6.5-fold increase in the positivity rate in the cross-validated training set and up to a 3-fold increase in the positivity rate in the independent test set, including both symptomatic and asymptomatic (up to 27%) individuals. Our findings suggest that, if deployed on a large scale and without needing self-reported symptoms, the ITA method could improve allocation of diagnostic testing resources and reduce the burden of test shortages.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.06.483172

ABSTRACT

New therapeutic targets are a valuable resource in the struggle to reduce the morbidity and mortality associated with the COVID-19 pandemic, caused by the SARS-CoV-2 virus. Genome-wide association studies (GWAS) have identified risk loci, but some loci are associated with co-morbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins; EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. Lung-specific eQTLs were identified from GTEx (v7) for each of the 332 host proteins. Aggregating COVID-19 GWAS statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19 which survived stringent multiple testing correction. EXOSC2 is a component of the RNA exosome and indeed, LC-MS/MS analysis of protein pulldowns demonstrated an interaction between the SARS-CoV-2 RNA polymerase and the majority of human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression, impeded SARS-CoV-2 replication and upregulated oligoadenylate synthase (OAS) genes, which have been linked to a successful immune response against SARS-CoV-2. Reduced EXOSC2 expression did not reduce cellular viability. OAS gene expression changes occurred independent of infection and in the absence of significant upregulation of other interferon-stimulated genes (ISGs). Targeted depletion or functional inhibition of EXOSC2 may be a safe and effective strategy to protect at-risk individuals against clinical COVID-19.


Subject(s)
Genomic Instability , Citrullinemia , COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.07.22270634

ABSTRACT

ABSTRACT Wearable sensors can continuously and passively detect potential respiratory infections, before or absent symptoms. However, the population-level impact of deploying these devices during pandemics is unclear. We built a compartmental model of Canada’s second COVID-19 wave and simulated wearable sensor deployment scenarios, systematically varying detection algorithm accuracy, uptake, and adherence. With current detection algorithms and 4% uptake, we found that deploying wearable sensors could have averted 9% of second wave SARS-CoV-2 infections, though 29% of this reduction is attributed to incorrectly quarantining uninfected device users. Improving detection specificity and offering confirmatory rapid tests each minimized incorrect quarantines and associated costs. With a sufficiently low false positive rate, increasing uptake and adherence became effective strategies for scaling averted infections. We concluded that wearable sensor deployment can meaningfully contribute to pandemic mitigation; in the case of COVID-19, technology improvements or supporting measures are required to reduce social and economic costs to acceptable levels.


Subject(s)
COVID-19
4.
National Bureau of Economic Research Working Paper Series ; No. 28085, 2020.
Article in English | NBER | ID: grc-748506

ABSTRACT

Vaccines exert a positive externality, reducing spread of disease from the consumer to others, providing a rationale for subsidies. We study how optimal subsidies vary with disease characteristics by integrating a standard epidemiological model into a vaccine market with rational economic agents. In the steady-state equilibrium for an endemic disease, across market structures ranging from competition to monopoly, the marginal externality and optimal subsidy are non-monotonic in disease infectiousness, peaking for diseases that spread quickly but not so quickly as to drive all consumers to become vaccinated. Motivated by the Covid-19 pandemic, we adapt the analysis to study a vaccine campaign introduced at a point in time against an emerging epidemic. While the nonmonotonic pattern of the optimal subsidy persists, new findings emerge. Universal vaccination with a perfectly effective vaccine becomes a viable firm strategy: the marginal consumer is still willing to pay since those infected before vaccine rollout remain a source of transmission. We derive a simple condition under which vaccination exhibits increasing social returns, providing an argument for concentrating a capacity-constrained campaign in few regions. We discuss a variety of extensions and calibrations of the results to vaccines and other mitigation measures targeting existing diseases.

5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.15.21258703

ABSTRACT

The determinants of severe COVID-19 in non-elderly adults are poorly understood, which limits opportunities for early intervention and treatment. Here we present novel machine learning frameworks for identifying common and rare disease-associated genetic variation, which outperform conventional approaches. By integrating single-cell multiomics profiling of human lungs to link genetic signals to cell-type-specific functions, we have discovered and validated over 1,000 risk genes underlying severe COVID-19 across 19 cell types. Identified risk genes are overexpressed in healthy lungs but relatively downregulated in severely diseased lungs. Genetic risk for severe COVID-19, within both common and rare variants, is particularly enriched in natural killer (NK) cells, which places these immune cells upstream in the pathogenesis of severe disease. Mendelian randomization indicates that failed NKG2D-mediated activation of NK cells leads to critical illness. Network analysis further links multiple pathways associated with NK cell activation, including type-I-interferon-mediated signalling, to severe COVID-19. Our rare variant model, PULSE, enables sensitive prediction of severe disease in non-elderly patients based on whole-exome sequencing; individualized predictions are accurate independent of age and sex, and are consistent across multiple populations and cohorts. Risk stratification based on exome sequencing has the potential to facilitate post-exposure prophylaxis in at-risk individuals, potentially based around augmentation of NK cell function. Overall, our study characterizes a comprehensive genetic landscape of COVID-19 severity and provides novel insights into the molecular mechanisms of severe disease, leading to new therapeutic targets and sensitive detection of at-risk individuals.


Subject(s)
COVID-19 , von Willebrand Disease, Type 3
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.05.434150

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2 (COVID-19), is a positive single-stranded RNA virus with a 30 kb genome that is responsible for the current pandemic. To date, the genomes of global COVID-19 variants have been primarily characterized via short-read sequencing methods. Here, we devised a long-read RNA (IsoSeq) sequencing approach to characterize the COVID-19 transcript landscape and expression of its ∼27 coding regions. Our analysis identified novel COVID-19 transcripts including a) a short ∼65-70 nt 5’-UTR fused to various downstream ORFs encoding accessory proteins such as the envelope, ORF 8, and ORF 9 (nucleocapsid) proteins, that are relatively highly expressed, b) novel SNVs that are differentially expressed, whereby a subset are suggestive of partial RNA editing events, and c) SNVs at functional sites, whereby at least one is associated with a differentially expressed spike protein isoform. These previously uncharacterized COVID-19 isoforms, expressed genes, and gene variants were corroborated using ddPCR. Understanding this transcriptional complexity may help provide insight into the biology and pathogenicity of SARS-CoV-2 compared to other coronaviruses.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL